STMicroelectronics Technology offer through CMP in 2020
Deep Sub-Micron, SOI and SiGe Processes
https://mycmp.fr
CMP Process Portfolio from ST

- **Low Power & High Speed Digital, RF**
 - 28nm FDSOI: 28FDSOI

- **Optical, Wireless, Analog High Performance**
 - 55nm SiGe: BiCMOS055

- **Advanced Mixed A/D, RF**
 - 65nm CMOS: CMOS065LPGP

- **High Voltage Applications**
 - 160nm CMOS: SOIBCD8s
 - 160nm CMOS: BCD8SP

- **Mixed A/D, RF**
 - 130nm SiGe: BICMOS9MW
 - 130nm SOI: H9SOI-FEM
 - 130nm HV-CMOS: HCMOS9A
 - *Energy Harvesting (H9A-EH)*
28nm: FDSOI28

28nm FDSOI: Fully depleted Silicon On Insulator:

- 28nm mixed A/D/RF CMOS SLP/8LM (triple Well).
- Gate length: 28nm.
- 8 Cu metal layers (6 thin + 2 thick Cu top metal).

Body Biasing
- Performance – Leakage balance
- Process compensation

- IO supply voltage: 1.8 V using the IO oxide.
- Ultra low k inter-level dielectric.
- Low leakage (High density) SRAMS.
- Analog / RF capabilities.
- MIM and Fringe MOM capacitors.
- Standard cell libraires (more than 3Mgates/mm²).

2 MPW runs forecast in 2020: 10th February, 14th September.
Starting price: 9000€/mm² for 40 samples and 6750€/mm² for circuit above 2mm².
Turnaround: 24 weeks to 32 weeks.
Current supported version of the design kits: 1.2

Applications: Low power and high performance applications
SiGe 55nm: BiCMOS055

- **55nm BiCMOS055 SiGe: Low Power:**
 - 55nm mixed A/D/RF CMOS SLP/8LM (triple Well)
 - Gate length: 55nm (drawn)
 - 8 Cu metal layers
 - Ultra-thick Cu top metal
 - Bipolar SiGe-C NPN transistors with $F_t = 320$ GHz
 - Low Power and General purpose MOS transistor
 - Dual gate oxide (1V for core, 2.5V and 3.3V for IO)
 - MIM and Fringe MOM capacitors
 - TFR (Thin Film Resistor)
 - High density of integration: up to 970k gates/mm²
 - Various power supplies: 2.5V, 1.2V, 1V
 - Millimeter-wave inductor

2 MPW runs forecast in 2020: **17th February, 27th July.**

Starting Price: **5500€/mm² for 40 samples and 4250€/mm² for circuit above 2mm².**

Turnaround: 28 weeks to 36 weeks.

Current supported version of the design kits: **2.8.a**

Applications: Optical, Wireless and High-Performance Analog Applications.
Deep Sub-micron 65nm: CMOS65LPGP

- **65nm CMOS65LPGP CMOS: Low Power General Purpose:**
 - 65nm mixed A/D/RF CMOS SLP/7LM (triple Well).
 - Gate length: 65nm.
 - 7 Cu metal layers.
 - High Density of integration: 800kgates/mm².
 - RF kit available on request and subject to restriction.
 - Dual gate oxide (1V for core and 2.5V for IO).
 - Various Power supplies for Core: 1.2V, 1.0V
 - Various Power supplies for IOs: 3.3V, 2.5V, 1.8V, 1.2V
 - MIM and Fringe MOM capacitors.
 - Multiple V_t transistor offering.
 - Standard cells librairies.

Applications: General purpose, Analog/RF capabilities.

2 MPW runs forecast in 2020: **4th February, 5th June**

Starting Price: **4500€/mm² for 40 samples and 3750€ for circuit above 5mm²**.

Turnaround: 22 weeks to 26 weeks.

Current supported version of the design kits: **5.8**
Sub-micron 130nm: B9MW

- **130nm BiCMOS9MW SiGe:**
 - 130nm mixed A/D/RF CMOS SLP/6LM (triple Well).
 - BICMOS9MW technology is using 130nm HCMOS9GP as base process.
 - Power supply: 1.2V for core and 2.5V & 3.3V for IO.
 - Threshold voltages: \(V_{TN} = 500/380 \text{ mV}, \ V_{TP} = 480/390 \text{ mV} \)

- 6 Cu Metal layers, thick top metal layer.

- **SiGe-C bipolar transistor** (\(f_T = 230 \text{GHz} \))
 - High performance and Medium voltage NPN bipolar transistor.

- MIM capacitors.
- Damascene Copper from metal 1 to last metal.

- Standard cells libraries

- 3 MPW runs forecast in 2020: 2nd March, 2nd June and 2nd November
- Starting Price: 2600€/mm\(^2\) for 40 samples and 2200€/mm\(^2\) for circuit above 5mm\(^2\)
- Turnaround: 16 weeks to 18 weeks.
- Current supporter version of the Design kits: 2.9b in BiCMOS9MW.

Applications: General purpose Analog/Digital/ RF applications and Millimeter-Wave applications (frequencies up to 77GHz for automotive radars), WLAN, Optical communication.
Sub-micron 130nm: H9-SOI-FEM

130nm H9-SOI-FEM: Front-End Module:

- 130nm mixed A/D/RF CMOS SLP/M4TC (Thick Copper Metal Stack).
- Gate length: 130nm.
- Ultra-thick Cu top metal, 4 Cu metal layers.
- 200mm SOI wafers with high resistive (HR) substrate and Trap Rich SOI.

- High Linearity MIM capacitor (2fF/mm²).
- 5.0V NLDMOS & PLDMOS.
- Standard cell libraries & 1.8V IO cells
- Floating body CMOS 5.0V NLDMOS.
- Power supply: 1.2 V

- Body contacted CMOS.
- Address a cost-driven application
- Capability to address all FEM applications (Switches, LNA, PA)

Enabling 802.11 ac LNA integration
- High linearity requirement
- Low NF at 5 GHz

Starting Price: Contact CMP for dedicated run price.
- Turnaround: 16 weeks to 18 weeks.
- Current supported version of the design kits: 14.1

Applications: Radio receiver/transceiver, Cellular, Wifi, Automotive keyless systems.
130nm: HCMOS9A + CEA-LETI NVM

- **130nm HCMOS9A HV-CMOS: Add-on Non Volatile Memory with CEA-LETI**
 - Based on HCMOS9A 130nm mixed A/D/RF technology of STMicroelectronics, and with cooperation of CEA-LETI.
 - CMP opened a new service for Non Volatile Memory integration in 2018.
 - Standard cell Libraries: Core cells, digital IO (1.2V, 1.8V) & 20V Analog IOs and NVM add-on.
 - LETI NVM design kit available from February/March 2018.

Library name: Addon_NVM_Lib
- **Category Device:** OxRam

Applications: For all applications requiring non-volatile memory.

1 MPW run forecast in 2020: 21\(^{st}\) September 2020
Starting Price: 4000€/mm\(^2\) for 40 samples and 3200€/mm\(^2\) for circuit above 5mm\(^2\).
Turnaround: 24 weeks to 30 weeks (dataprep/Front end ST and post-process CEA-LETI).
Current supported version of the design kits: 10.9/2018.4.1
BCD 160nm: BCD8sP

- **160nm BCD8SP**: Bipolar-CMOS-DMOS Smart Power:
 - 160nm Mixed Analog / Digital Bipolar-CMOS-DMOS 4LM.
 - Gate length: 180nm (drawn).
 - 4 Cu metal layers, Thick Power M4, M4 Al optional.
 - Operating voltages: 1.8V - 5V : Digital & Analog.
 - Power devices: 10V - 18V - 27V - 42V - 60V.
 - Dual gate oxide process: 1.8V CMOS, 5V CMOS.

- Analog + Digital + Power & HV on one chip.
 - High power transistor.
 - Low power digital and analog device.

Applications: Power Management systems, DC-DC converter, Motor drivers, Printer.

CMP Contact: Lyubomir KERACHEV

- 1 MPW run forecast in 2020: **12th March, 1st October**
- Starting Price: **2500€/mm²** for 40 samples, and **2200€/mm²** for circuit above 5mm²
- Turnaround: 18 weeks to 24 weeks
- Current supported version of Design Kits: **2.4.**
BCM annual users' meeting – 30 January 2020

160nm SOIBCD8s: Bipolar-CMOS-DMOS Smart Power on SOI:
- 160nm Mixed Analog / Digital Bipolar-CMOS-DMOS 4LM on SOI
- Gate length: 180nm (drawn).
- 4 Cu metal layers, Al-Cu Thick Power M4.

- Operating voltages: 3.3V baseline, 1.8V optional: Digital & Analog.
 - Medium Voltage Module Power MOS: 6V – 40V.
 - High Voltage Module MOS: 70V – 200V.
 - Dielectric Isolation on SOI.

- Analog + Digital + Power & HV on one chip.
 - High Voltage to drive external loads.
 - Analog block to interface « external world » to the digital systems.
 - Digital Core for signal processing.

• 2 MPW runs forecast in 2020: 16th July
• Starting Price: 2500€/mm² for 40 samples and 2200€/mm² for circuit above 5mm²
• Turnaround: 18 weeks to 24 weeks.
• Current supported version of Design Kits: 2.1

Applications: Automotive Sensor Interface ICs, 3D Ultrasound, MEMS & micro-mirror driver.
RAM and ROM blocks available through STMicroelectronics Memory Generators:

- BCD8SP
- HCMOS9GP
- BICMOS9MW
- HCMOS9A
- CMOS65LP
- CMOS65GP
- CMOS28FDSoI
- BiCMOS55

<table>
<thead>
<tr>
<th>Technology</th>
<th>SPREG</th>
<th>SPRAM</th>
<th>DPREG</th>
<th>DPRAM</th>
<th>ROM</th>
<th>MPSRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCD8SP</td>
<td></td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HCMOS9GP</td>
<td></td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>BICMOS9MW</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCMOS9A</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>CMOS65LP</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CMOS65GP</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMOS28FDSoI</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>BiCMOS55</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New Prices for 2020

<table>
<thead>
<tr>
<th>STMicroelectronics ¹</th>
<th>STANDARD €/mm²</th>
<th>DISCOUNT €/project</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 28nm CMOS28FDOSI</td>
<td>9000 ²,⁷</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>18000 + [(Area-2) x 6750] ⁵</td>
<td></td>
</tr>
<tr>
<td>ST 55nm BiCMOS055</td>
<td>5500 ²</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>11000 + [(Area-2) x 4250] ⁵</td>
<td></td>
</tr>
<tr>
<td>ST 65nm CMOS065</td>
<td>4500 ³</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>22500 + [(Area-5) x 3750] ⁶</td>
<td></td>
</tr>
<tr>
<td>ST 130nm BiCMOS9MW</td>
<td>2600 ³</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>13000 + [(Area-5) x 2200] ⁶</td>
<td></td>
</tr>
<tr>
<td>ST 130nm H9SOI-FEM</td>
<td>2200 ³</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>11000 + [(Area-5) x 1500] ⁶</td>
<td></td>
</tr>
<tr>
<td>ST 130nm HCMOS9GP</td>
<td>2500 ³</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>12500 + [(Area-5) x 2200] ⁶</td>
<td></td>
</tr>
<tr>
<td>ST 130nm HCMOS9A</td>
<td>2500 ³</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>12500 + [(Area-5) x 2200] ⁶</td>
<td></td>
</tr>
<tr>
<td>ST 0.16μm BCD8sP</td>
<td>2500 ⁴</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>12500 + [(Area-5) x 2200] ⁶</td>
<td></td>
</tr>
<tr>
<td>ST 0.16μm BCD8s-SOI</td>
<td>2500 ⁴</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>12500 + [(Area-5) x 2200] ⁶</td>
<td></td>
</tr>
</tbody>
</table>

STMicroelectronics Wafer Level Bumping

<table>
<thead>
<tr>
<th></th>
<th>STANDARD €/project</th>
<th>DISCOUNT €/project</th>
</tr>
</thead>
<tbody>
<tr>
<td>on 300mm ST 55nm BiCMOS055 process</td>
<td>25000</td>
<td>1500</td>
</tr>
<tr>
<td>on 300mm ST 65nm CMOS065</td>
<td>23000</td>
<td>1500</td>
</tr>
<tr>
<td>on 300mm ST 28nm CMOS28FDOSI</td>
<td>33000</td>
<td>1500</td>
</tr>
</tbody>
</table>
Thank You!
BACKUP
Supported CAD Tools by STMicroelectronics Design kits:

<table>
<thead>
<tr>
<th>IC</th>
<th>Electrical Simulation</th>
<th>Verification</th>
<th>Parasitic extraction</th>
<th>P&R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spectre (CDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eldo (MGC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hspice (SNPS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADS (Keysight)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Golden gate (Keysight)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDB 5.1.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OA 6.1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calibre (MGC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PVS (CDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>StarRCxt (SNPS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calibre xRC (MGC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXT (CDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Encounter (CDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICC (SNPS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- HCMOS9GP
- BiCMOS9MW
- HCMOS9A
- H9SOI-FEM
- CMOS065
- BiCMOS55
- CMOS028 FDSOI
- BCD8sP

CMP annual users’ meeting – 30 January 2020

Horizon 2020 European Union funding for Research & Innovation
The circuits must be sent to CMP via FTP:
- Circuits should be sent, **with corners cut**, **without sealring** and **without tiling**.
- DRCs should have been run on the gds2 file before being sent. DRC must be clean except low densities outside exclusion area.

DRC free of error
- Replacement of ST standard cells
- Data checking + DRC
- Help for corrections (Report)

Sealring generation
- Addition of the sealring
- Addition of logos
- Addition of foundry cells

Tiling
- Verification of tiled circuit
- Report to the user
- Shipment to ST
Submission cycle for CMP users

- Design transfer
 - Data checking (DRC)
 - Help for corrections (Report)
 - Data preparation (Sealring/Tiling)
 - Supports

- Wafers shipment
 - 12 to 28 weeks Depending on technologies

Users

- Research Laboratories
- Education & Universities
- Companies, Startup

Foundry

- Transfer validated designs

- Report for corrections

2 to 3 weeks

Reservation for MPW run one month before the CMP deadline is mandatory:

- The global turnaround includes the data checking, verifications, supports and final data preparation done at CMP

CMP annual users’ meeting – 30 January 2020