Enlarge CMP Packaging Services Portfolio

- Offering advanced, high performances and low cost packaging solutions

Flip-Chip & Advanced packaging advantages

- Improving IC performances:
 - Reducing parasitic
 - Increasing I/Os output speed & bandwidth
 - Improving precision
 - Reducing losses

- Minimizing the assembly footprint
 - Miniaturization
 - Optimized routing

- Increasing thermal dissipation
Die Level Flip-Chip service
ams Wafer Level bumping
Silicon Interposer
OPEN 3D Post-process
2017 perspectives

Wafer-Level Services
Die Level Flip-Chip prototyping:

- **Major constraints**
 - Complex process flow
 - High engineering effort
 - Long processing delays
 - Increased cost & failure risk

CMP cost reduction strategy:

- **CMP takes in charge NRE costs**

- **Using pre-specified packaging properties of the circuit:**
 - Die size
 - I/O pin count
 - Die thickness
 - Passivation opening position

- **Turn around time optimization**
 - Single procedure avoiding case by case processing
 - Prequalified subcontractor engineering effort
Die Level Flip-Chip on Organic Substrates

- After standard CMP MPW Runs, single dies undergo a series of steps:
 - Under Bump Metallization deposition
 - Solder balls deposition
 - **Fabrication of plastic LGA package**
 - Flip-Chip assembly on plastic LGA package by mass reflow
 - Underfilling
 - Molding

- **Evaluated LGA packages:**
 - 56 I/Os optimized for ST designs
 - 84 I/Os optimized for ams designs

CMP is currently evaluating this process
Die Level Flip-Chip on Ceramic Substrates

• After standard CMP MPW Runs, single dies undergo a series of steps:
 - Gold Stud bump bonding
 - Fabrication of ceramic BGA package
 - Flip-Chip assembly on BGA ceramic package by thermocompression with NCP
 - Molding
 - Backside BGA balling

• Evaluated BGA packages:
 - 44 I/Os, 68 I/Os, 84 I/Os, 100 I/Os & 224I/Os

CMP is currently evaluating this process
In partnership with ams, CMP offers a bumping service at wafer level on any 0.35µm and 0.18µm MPW run:

- Forming an evenly distributed array over chip surface
- Electrical connections to CMOS pads with RDL layer
- I/O Pitch compatible with PCB assembly processes

Wafer-level bumping option is supported within ams hit kit upon request. Bumping option is available for a flat fee of 6200 € per design (for 25 chips delivered).
CMP offers a service for two types of Silicon Interposer prototyping, in partnership with ams.

Passive Interposer: Only the backend, for high density routing and passive components integration.

Active Interposer: Active layer available for CMOS integration, allowing a wider range of applications.

Features:
- 4 layer metal stack (Thick last metal) manufactured at ams foundry
- Under Bump Metallization (Ni/Pd/Au) post-processed by sub-contractor
- Interposer includes wire-bond pads to allow its connection to a PCB, or a compatible package

Prices (30 interposers):
- Passive interposer 40000 € (< 300 mm²) / Active interposer 50000 € if area < 100 mm²
- 64000 € if 100 mm² < area < 200 mm²
OPEN 3D post-process allows 3D interconnection integration on various technology nodes. Modules are integrated at wafer level after standard MPW.

Front-side modules:
- µ-Bumps
- UBM

Back-side modules:
- TSV last
- RDL
- Bumps

<table>
<thead>
<tr>
<th>Bumps</th>
<th>Cu/SnAg ; Ø 65µm ; 120 µm min pitch ; ~ 60-70 µm thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-bumps</td>
<td>Cu/SnAg ; Ø 25 µm ; 50 µm min pitch ; ~ 20 µm thickness</td>
</tr>
<tr>
<td>UBM</td>
<td>TiNiAu ; 30 µm width min ; 50 µm min pitch ; 1 µm thickness</td>
</tr>
<tr>
<td>TSV-Last</td>
<td>Ø 60 µm x 120 µm depth ; 120 min pitch</td>
</tr>
<tr>
<td>Backside RDL</td>
<td>Cu ; 20 µm min width ; 40 µm min pitch ; 4-8 µm thickness</td>
</tr>
</tbody>
</table>
OPEN 3D Application examples

- Small footprint
- 2 heterogeneous nodes for sensor and processor
- Top-die frontside access to light sensing with TSV

Application: Image sensor in embedded devices

- High bandwidth between dies
- 2 heterogeneous nodes for:
 - High density digital die
 - Radio-frequency die

Application: Processor on RF communication module

- Electronic die integration on Photonic IC

Application: Data center, HPC
Post-Processed die combines two technologies, thus requiring a special consideration during design, verification and fabrication

3D Design kit
- As an add-on to the foundry kit
- OPEN 3D post-process technology integration to cadence
- Specific additional libraries (Bumps, µ-bumps, TSV...)
- Specific calibre die-level DRC deck
- Specific documentation (DRM, tutorial ...)

Assembly-level verifications
- Run with calibre 3DSTACK
- Die-to-die layout verification
- Die-to-die electrical connection verification

Designing a 3D post-processed die can be confusing for someone used to classical 2D projects. CMP will take a special consideration to guide designers every step of the way for achieving their 3D projects.
OPEN 3D Prices & schedule

Post-Process options and prices

Front-side: μ-Bumps or UBM
For ams 0.35μm and ST 130, 65, 55 and 28nm CMP MPW

22500 € + additional fees *

Back-side: TSV, RDL and Bumps
For ams 0.35μm ST 130nm, 65nm and 55nm CMP MPW

53500€ + additional fees *

- OPEN 3D post-process MPW runs are subject to a sufficient level of participation
- *Additional fees are applied function of the silicon MPW technology: 6.5k€ in 0.35μm ams/ 3.4k€ in 130nm STM/ 9k€ in 65nm STM/ 11k€ in 55nm STM / 13.5k€ in 28nm STM.
- Dedicated runs are made available at any time, please contact CMP

Schedule

Open 3D-CMP post processes are available on the last MPW runs of the year for the following technologies:

<table>
<thead>
<tr>
<th>IC 28nm CMOS28FDS01</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 55nm BiCMOS055</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>IC 65nm CMOS065</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>IC 130nm BiCMOS9MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>IC 0.18μm BCD8SP</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td>10</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>IC 0.35μm RF C35B4M3</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Photonic MPW Prototyping SI310-PHMP2M</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

* Schedule on january 2017 – Run dates are subject to changes

CMP annual user’s meeting, 26-Jan-17, PARIS
Die-level Flip-Chip services

- Evaluating the proposed options:
 - CMP made an investment to evaluate the feasibility
 - Test ICs and substrates have been designed and manufactured
 - Assembly & characterization of prototypes are in progress

- Making the offer available during 2017

- Working on a stud bumping offer at die level as stand alone

Wafer-level services

- Widening our wafer-level bumping offers
Thank you!