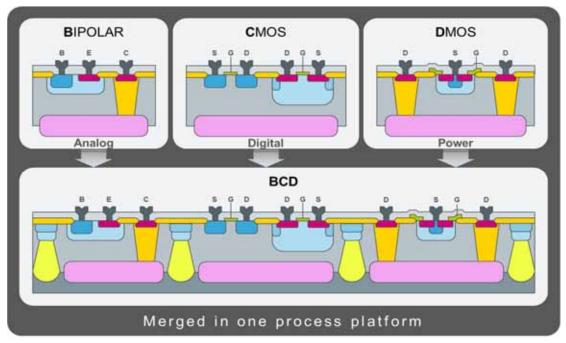


BCD8sP Technology Overview


Sense & Power and Automotive Technology R&D Smart Power Technology

February 2015

What is BCD?

A concept invented by ST in the mid-80s [1][2][3] widely used today in the industry

[1] Single Chip Carries Three technologies, Electronics Week, December 10, 1984

[2] C. Cini, C. Contiero, C. Diazzi, P. Galbiati, D. Rossi, "A New Bipolar, CMOS, DMOS Mixed Technology for Intelligent Power Applications", ESSDERC '85 Proceedings, Aachen (Germany), September 1985

[3] A. Andreini, C. Contiero, P. Galbiati, "A New Integrated Silicon Gate Technology Combining Bipolar Linear, CMOS Logic and DMOS Power Parts", IEEE Transactions on Electron Devices, Vol. ED-33 No.12, December 1986

Analog + Digital + Power & HV on one chip

High Voltage or Power section (DMOS) to drive external loads

Analog blocks to interface the "external world" to the digital systems

Digital core (CMOS) for signal processing

BCD Technology Segmentation

SEGMENT		TECHNOLOGY PLATFORM	APPLICATION FIELDS		
High Voltage BCD		BCD6s Offline 3.3V / 5V CMOS – 25V/800V	E Lighting	⊮ Motors	Electrical Car
	0.32µm	BCD6s HV Transformer 3.3V CMOS - Galvanic Isolation 4-6KV			
SOI		SOI-BCD6s 3.3V CMOS - 20V/50V/100V/190V	_1))	5	
BCD		SOI-BCD8s 1.8V CMOS - 70V/100V/140V/200V	Full digital amplifier	Echography	AMOLED Pico-projector
	0.16µm	BCD8As 3.3V CMOS - 8V/18V/40V		02	
		BCD8sP 1.8V CMOS - 10V/18V/27V/42V/60V	HDD	Airbag 🛕	Audio amplifier
Advanced		BCD8sAUTO 3.3V CMOS - 20V/40V/65V/100V		ESP	
BCD	шm	BCD9s 1.8V CMOS - 10V/40V/60V	Printers (ABS)	Power Line modems
	0.11	BCD9sL 3.3V CMOS - 20V/40V/65V/100V			
	90nm	BCD10 1.2V CMOS - 8V to 65V	Power Supply	Automotive	Power Management for Mobile
High	0.18µm	HVG8 1.8V/22V/32V CMOS	Bio Medical Advanced Analog		↑
Voltage CMOS	0.18	HVG8A 16V CMOS			dvanced Analog

BCD Evolution in the "More than Moore" arena

Driven more by Process Customization for Application Requirements than by Reduction of Lithography Node

Trend towards Advanced Technology Nodes compatible with availability of Depreciated Advanced Manufacturing Plants

Long Lifetime of Products and Process Generations

Always present demand for Cost Reduction

BCD in ST – Overview

Solid know-how developed over three decades

 Processes from 4.0 µm to 0.11 µm developed and produced

Unique voltage range offering

5 V to

Large voltage range spanning multiple application fields

800 V

 Advanced process nodes differentiated by application

 $0.16 \mu m$

 Offers best in class HV devices with large CMOS integration capability

- Process customization by application
 - Strong synergy between technology, design and application

BCD8sP Overview ____

BCD8sP is a 0.16µm Technology Platform dedicated to Smart Power applications with the following main features:

- Baseline 1.8V CMOS for High Density Logic cores
- Best-in-class Power devices: 10V 18V 27V 42V
- Dual gate oxide process: 1.8V CMOS, 5V CMOS & Power Devices
- 4 Metal Levels with Thick Power metal.
- Available memory: OTP, FTP (EEPROM)

Application examples:

- Hard Disk Drivers Power Combo
- Motor Drivers
- Printer
- DC-DC converter
- Power Management

BCD8sP Device Portfolio

Low Voltage

- **1.8V CMOS**
- **5V CMOS**

Diodes

- 5V Zener, 5V Isolated Zener
- p+/Nwell, p+/HVnwell
- n+/Pwell, n+/Hvpwell

High Voltage

- 10V/18V/27V/42V Power **NMOS** Isolated Drain
- 42V Power NMOS HS
- 15V/27V/32V/48V/60V nDrift MOS
- 15V/27V/32V/48V/60V pDrift MOS

Capacitors

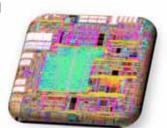
- 1.8V/5V poly capacitors
- 12V poly-poly capacitor
- MOM

Resistors

- Poly resistors (4 types), including HIPO resistor
- · Diffused resistor

Bipolars

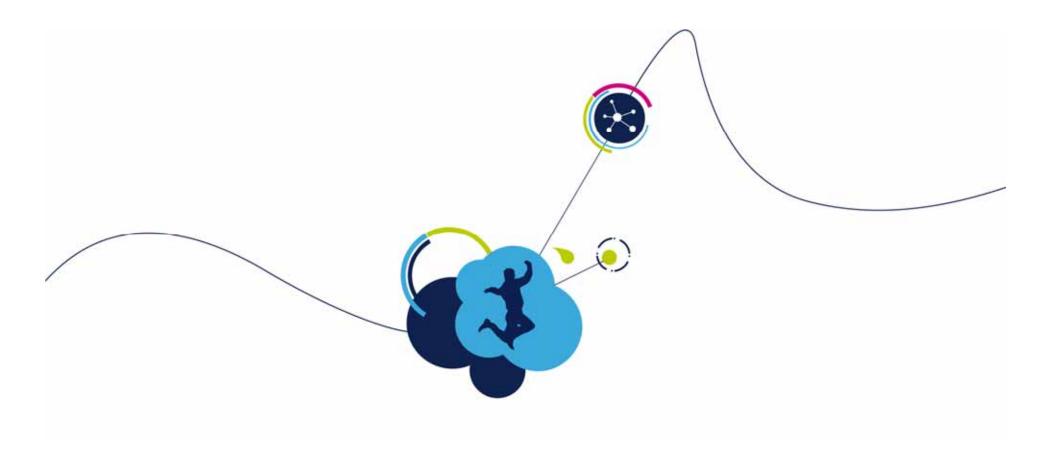
- 5V NPN
- 5V PNP HP (Isolated Vertical)
- 18V PNP (Isolated Vertical)


ESD & IPs

- 1.8V/5V/8V/18V/42V/60V **ESD** protection
- OTP & NVM libraries

BCD8sP Main Features

- 1.8V CMOS with HD Digital Library (90 kGates/mm²)
- 5V CMOS and wide passive components offer for Analog design
- 4 Metal level BEOL with following options for Top Metal:
 - 3µm Thick Aluminum
 - 10µm Thick Copper (Re-Distribution Layer)



Best-in-class Power devices with specification matching real application needs

Nch MOS POWER S	POWER PERFORMANCE		
(full T range: -40 °	(T = 25 ° C)		
Max Operating Voltage (MOV)	Absolute Max Rating (AMR)	BVdss (TYP)	$R_{ON} \times A$ (m $\Omega \times mm^2$)
10 V	12 V	14 V	2.9
18 V	25 V	29 V	8.7
27 V	32 V	36 V	14.2
42 V	46 V	57 V	28

Typical product masks count (based on option): 28 to 33

Design Platform: Design Kit, supported tools & Libraries

Design Platform – Basic Tools Supported in PDK 11

Front-end/Schematic capture	EDA tools	EDA Vendors	Tool version (or newest)
Schematic Capture (Composer)	IC	Cadence	IC6.1.6.500.3
Design environment	ArtistKit	ST	5.9
	Spectre	Cadence	12.11.164
	Eldo	Mentor	13.1

Layout Entry & Finishing	EDA tools	EDA Vendors	Tool version (or newest)
Layout Placement	Virtuoso Layout Editor	Cadence	IC6.1.6.500.3
Layout Verification	Calibre ViPVS	Mentor Cadence	2013.1_14.11 13.10.286
Parasitic Extraction: interconnect RC	Star-RCXT	Synopsys	i-2013.12-1

Metal options available: 4M AI - 4M Cu RDL

Design Platform – Full List of supported Tools

Cadence

IC 6.1.6.500.3 (Virtuoso Framework)
Spectre 12.11.164 (Analog Simulator)
ViPVS 13.10.286 (Layout Verification)
mmsim 12.11.164 (Analog simulator environment)
incisiv 13.10.001 (Simulation Verification Environment)
Conformal 12.10.300 (Formal Verification)
Rc 12.20.000 (Synthesis)
edi 13.2usr3 (P&R)
IC 6.1.6.500.3 (VSR AnalogRouter)

Synopsys

Star-RCXT i-2013.12-1 (Parasitic Extraction hsimplus i-2013.12 (Tx Level Simulator) mvtools g-2012.09-4 (Static checker) vcsmx h-2013.06-sp1 (Digitla simulator) xa i-2013.12 (Tx Level Simulator) Primetime h-2013.06-sp2 (STA) PrimeRail f2011.12 (Digital IRDrop) Synthesis h-2013.03-sp3 (ATPG) Formality h-2013.03-sp3 (Formal Check) Galaxy-ca h-2013.06-sp2 (Constraint Analyzer) Iccompiler g-2012.06-sp5 (P&R)

Hercules y-2006.12-sp2-6 (Cheker for Prme Rail)

Mentor

Eldo/Eldo Premier 13.1 (transistor level)
Questa-ADMS 13.1 (mixed-signal cosimulation)
Calibre 2013.1_14.11 (Layout Verification)
QuestaSim 10.2.b (digital simulation)

Design Platform – Digital Libraries/IPs 13

Digital Library

BCD8000HDS - (1.8V CMOS)

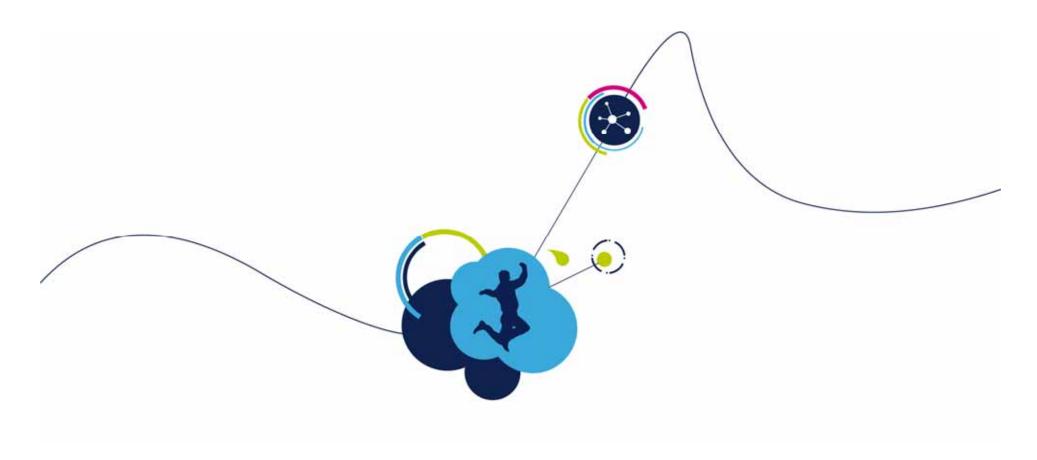
SP Analog **IPs**

Macrocells ESD

Dedicated library for HV protection

Memory **Compilers**

- Single port RAM (2 compilers)
- OTP (1 to 16) x (8/16) bits
- · Cut service available on request


10's Libraries

- 3V3FT 4MAI (3V capable 5V tolerant GPIO)
- 5V0 4MAI (5V capable GPIO)

Power **Devices** Library

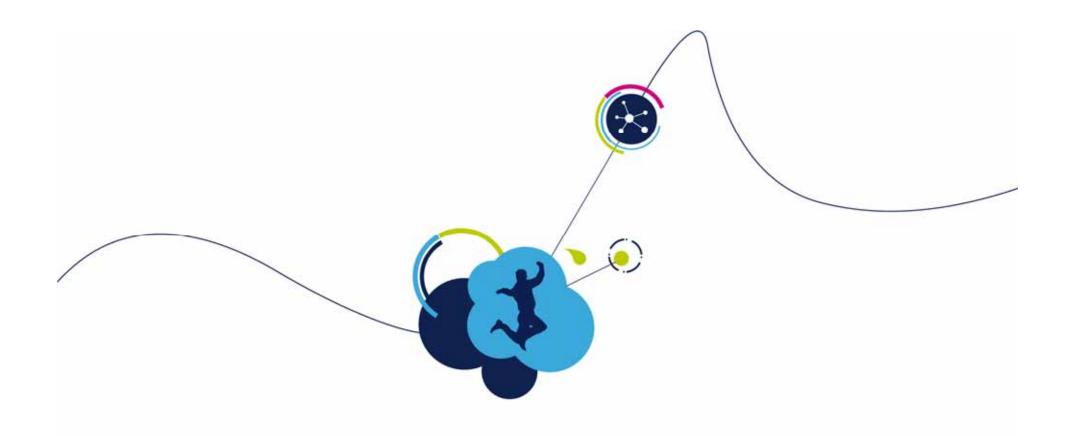
- «Ready-to-use» Power Devices layout
- Cut service available on request

Schedule

BCD8sP Design Timeline

PDK / Design Platform availability

NOW


Next MPW run

June 2015

Last MPW in 2015

November 2015

Thank You

