

ams Full Service Foundry

CMP User Group Meeting 2015, Paris

Andreas Wild

World of Sensors

Providing a seamless human-machine interface for a richer and more intuitive user experience

Communications & Consumer

- Ambient light, color & proximity sensing
- · Gesture recognition
- NFC based contactless payment solutions
- Active noise cancellation
- Power management solutions

Industrial

- Industrial/building automation
- Motion control
- Heat, Ventilation & Air conditioning (HVAC))
- Position sensing

Environment

- Lightning sensors
- Gas sensors
- Seismic analysis
- Temperature sensors
- Day light harvesting

Automotive

- Safety systems
- Battery management
- Position sensing
- Comfort & chassis sensors
- Advanced driver assistance

Medical

- Digital x-ray
- Computer tomography
- Surgical Robots
- Diagnostic equipment

Health/Fitness

- Diabetes management
- Heart rate monitors
- Medication tracking
- Activity trackers

Our focus

	High performance analog ICs and foundry service		
Target markets	Consumer and Communications	Industrial, Medical, & Automotive	
	59% of revenues 2013	41% of revenues 2013	

Core expertise	Sensor and sensor interfaces	Power management	Wireless
----------------	------------------------------	------------------	----------

Financial overview

EUR millions

Revenue 2013: **377,8 M€**

Revenue 2014: 464,4 M€

Total revenues by market and region 2013

Proven manufacturing model

In-house capacity + partnerships: a scalable and robust growth model

Wafer manufacturing

- Specialty analog processes
- 200mm in-house fab (over 155 kwafers p.a.)
- Technology nodes: 0.18μm 0.35μm 0.8μm
- Best-in-class efficiency
- Multi-source security: TSMC, UMC, IBM
- Zero-defect program

Assembly and test

- In-house test in Austria and Philippines
- Multi-source assembly locations
- End-to-end fully integrated supply chain

Capacity expansion

Annual Wafer start capacity

Several capacity expansions since Q2-2013

• 2013 capacity: 120k WSPA

First expansion +15k WSPA completed

Second expansion +20k WSPA (total 155k) completed

Third expansion: +25k WSPA (total 180k) ongoing

Fourth expansion: Approval pending

Test facility expansion

- Philippines test center fully loaded
- Philippines test center expansion Phase II started

Full service foundry

Your one-stop-shop for turn-key high performance analog IC solutions

Specialty processes

- 0.18μm, 0.35μm, 0.8μm
 MPW service
- CMOS, HV, SiGe
- AUT & MED certified
- Extended temp range

Foundry services

- Benchmark PDK: hitkit
 Mixed-signal test
- Highly accurate models
 Qualification services

Turn-key solutions

- One-stop-shop

- Digital & analog base IP 2nd source capabilities Advanced packages

More than silicon

- 3D IC using TSVs
- RGB & IR color coating
- Extended IP portfolio

Specialty analog processes

ams process overview & roadmap

Technology details		0.8µm	0.35µm	0.18µm
	Max. number of metal layers	2	3 - 4	4 - 7
	Gates per mm²		23k	118k
	Embedded EEPROM / Flash		✓	
Mixed-Signal / RF	Max. operating frequency		~ 1 GHz	~ 4 GHz
High Voltage CMOS	Scalable voltage modules	50V	120V	50V
SiGe BiCMOS	Max. operating frequency		~7 GHz	
Qualified for Automotive & Medical	Scalable and robust model for growth through partnerships	amııı	amui 🐝	amu ibm

MPW & prototype service

Find our MPW schedule online: http://asic.ams.com/cot/mpw/MPW_Shuttle_Service_2015.pdf

Process	Data and Order to	Tape In	Samples Out 1)		
Process		·	Samples Out 7		
0.18 μm HV-CMOS 20V / 50V ⁵⁾					
H18	ams	2-Mar-15	22-May-15		
H18	ams	1-Jun-15	21-Aug-15		
H18	ams	31-Aug-15	20-Nov-15		
H18	ams	30-Nov-15	19-Feb-16		
	0.18 µm Cl	MOS 1.8V / 5V ⁵⁾			
C18	ams	2-Mar-15	22-May-15		
C18	ams	1-Jun-15	21-Aug-15		
C18	ams	31-Aug-15	20-Nov-15		
C18	ams	30-Nov-15	19-Feb-16		
().35 µm HV-CMOS 20V / 5	60V / 120V (embedded Flas	sh ⁴⁾)		
H35B4D3	ams	16-Feb-15	17-Apr-15		
H35B4D3	ams	4-May-15	26-Jun-15		
H35B4D3	ams	17-Aug-15	16-Oct-15		
H35B4D3	ams	9-Nov-15	08-Jan-16		
0.35 µm (CMOS 3.3V / 5V (embedd	led Flash ⁴⁾) and 0.35 µm (Opto-CMOS ³⁾		
C35 ²⁾	ams	9-Feb-15	27-Mar-15		
C35 ^{2) 3)}	Fraunhofer IIS	07-Apr-15	29-May-15		
C35 ²⁾	ams	1-Jun-15	17-Jul-15		
C35 ²⁾	Fraunhofer IIS	27-Jul-15	18-Sep-15		
C35 ²⁾	ams	21-Sep-15	6-Nov-15		
C35 ^{2) 3)}	Fraunhofer IIS	16-Nov-15	08-Jan-16		
0.35 μm SiGe-BiCMOS 3.3V / 5V 2P/4M					
S35	ams	9-Mar-15	08-May-15		
S35	ams	15-Jun-15	14-Aug-15		
S35	ams	7-Sep-15	06-Nov-15		
S35	ams	23-Nov-15	15-Jan-16		

Advantages

- Low cost alternative to prototype designs
- Mask costs are shared by MPW participants
- Frequent schedules for all offered process technologies

CMP (cmp.imag.fr)

- Long term partner
- Very reliable

- Supporting small and mid size projects
- Supporting academic and start ups

Process Options	C18	H18	aC18	aH18
Metal	3-8	3-7	3-6	3-6
High Res	✓	✓	✓	✓
Precision Res	✓	✓	✓	✓
TaN Res	✓	✓		
HVT	✓	✓	✓	✓
SHVT		✓	LL*	LL*
5V	✓	✓	✓	✓
PI	✓		✓	
20V GOX		✓		10/2016
MIM	✓	✓	✓	✓
DUALMIM	✓	✓	✓	✓
HD MIM	✓	✓		
DUAL HD MIM	✓	✓		
Schottky	✓	✓	√ *	✓ *
120V		(✓)		5/2016

0.18µm HV-CMOS process implementation status

	50V	120V	20V GOX
Project start	√ 02.2014	√ 06.2014	04.2015
Alpha hitkit to selected customers	√ 01.2015	10.2015	10.2015
Risk MPW participation possible	√ 12.2014	04.2015	
Process Freeze (engineering run capability)	04.2015	04.2016	04.2016
Conditional release	10.2015	05.2016	10.2016
Final design documents and hitkit	10.2015	06.2016	10.2016

0.18µm HV-CMOS process implementation status

Digital libraries & Memories

Digital Library:

High density digital core library
 Q1/2015

Memory overview:

•	OTP: Polyfuse. IP block available from ams	✓ Q4/2014
•	SRAM/ROM: ams Memory compilers	Q2/2015
•	EEPROM: Synopsys 0-Mask EEPROM available (8 kBit)	Q4/2015

ams' prototyping portfolio, I.

Multi project wafer (MPW)

- + Lowest costs
- Limited number of devices
- Fixed schedule

Multi layer reticle wafer (MLR)

- + Tape out at any time
- + Manufacture as many samples as required
- + Moderate NRE due to reduced # of masks
- Mask set cannot be used for mass production

New engineering option!

Single die tooling (SDT)

- + Tape out at any time
- + Manufacture as many samples as required
- Mask set can be immediately used for mass production

ams' prototyping portfolio, II.

Multi project wafer (MPW)

- New option: WLCSP
- Including RDL (Cu)
- 250µm bump diameter
- 400µm bump pitch

New option! MPW with WLCSP

Example 1: Active Interposer

TSV + Backside RDL

Example 2: PD Wafer

TSV + Backside RDL

Example 3: Pad Replacement

TSV + Backside RDL

ams AG Full Service Foundry

Tobelbader Strasse 30 8141 Unterpremstaetten AUSTRIA

T: +43 3136 500 31836 Email: foundry@ams.com

http://www.ams.com http://asic.ams.com

Thank you

Please visit our website www.ams.com