micro et nanoélectronique microsystèmes microsystèmes intelligence ambiante intelligence to santéchaîne de l'image biologie et santéchaîne

2011

Design enablement and multi project wafer opportunity at LETI

Dr Carlo REITA, March 17th 2011

OUTLINE

- **FDSOI technology status**
- Circuit design platform status
- **LETI MPW offer**

Introduction

- Use of SOI:
 - Improve the scalability further than Bulk
 - Reduce the variability thanks to undoped channel
 - Limit the static power and dynamic power
 - ► Low V_{DD} operation mandatory

FDSOI Technology

- Non-disruptive CMOS integration: planar device
- No channel doping, No Pocket implant
- Raised Source/Drain process
- Smart Substrate (UTBB) from SOITEC already within specification

Electrostatic Performance

- Enhanced electrostatic control compared to Bulk!
- Competitive with FinFET
 - Good for Power control! (Pdyn ~V_{DD}²)
- ♦ Can be maintained down to L_G=10nm with UTBOX

FDSOI results: Vt variability

- World record V_T mismatch !!
- Undoped SOI
 - today it already fully meets 20nm LP specification
 - largely exceed current nodes bulk results

Advantages of FDSOI for SoC

Excellent Electrostatic Control

- Ability to use undoped Sichannel → low variability → SRAM funtionnality at low Vcc
- Low DIBL → increased speed performance

Using UTBOX

- Possibility of V_{th} control by Back-Bias (scalable)
- Increased scalability below 16nm
- Potential for Hybrid Bulk/FDSOI process for Power devices

OUTLINE

- FDSOI technology status
- Circuit design platform status
- **LETI MPW offer**

Circuit Design platform: PDK for R&D

- Technological library (Design & Layout)
 - Devices MOS (Symbol, CDF)
 - Pcells MOS
 - Scribe 22 pads, contacts

- **Electrical simulations (Eldo)**
 - Model cards,
 - Device sub circuits,
 - Corners setup

- Physical verification and Layout finishing (Calibre)
 - DRC verification file (Design Rules Checking),
 - LVS verification file (Layout Versus Schematic),
 - **Dummies and Mask generation file**

- Parasitic extraction RC (Post-Layout, Star-RCXT)
 - Process description file (itf → nxtgrd),
 - Mapping files (devices, layers),
 - Command file

Circuit Design platform: PDK for R&D

Design platform deployment supported by the EUROSOI+ Eur **CONSORTIUM** (CA in European FP7 initiative)

Preliminary validation via bilateral collaborations Berkeley

Circuit Design platform: FDSOI SPICE model

- LETI has developed a surface potential compact model
 - today implemented as VerilogA plug-in
 - hard-coding in EDA tools possible
- Analytical model which give access to all internal physical quantities:
 - Surface potentials at drain and source sides and at the punch-off
 - Saturation drain voltage
 - Terminals currents, GIDL, ...
 - Charges
 - SOI related physical effects (Coupling, steeper subthreshold slope, Self-Heating)

Circuit Design platform: Model calibration

- Thick and thin BOX predictive 20nm model cards available, calibrated on LETI FDSOI technology
- Used by STMicroelectronics for benchmarking (see F.Boeuf' presentation)
- Predictive model cards already developed down to 11nm node

OUTLINE

- FDSOI technology status
- Circuit design platform status
- **LETI MPW offer**

MPW offer: content

- R&D oriented Design Kit made available via CMP service
 - 20nm node FEOL with 65nm back-end in a first phase
 - 20nm node FEOL with 28nm back-end in a second phase
 - Evolution towards 16nm planned
- Specific acceptance rules
 - no military or medical application circuits

Offer outline

- R&D oriented Design Kit made available with initial parameter set
 - min Lg=25nm
 - single Vt n- and p-MOSFETS with balanced Vth of ±0.4V
 - back end rules 65nm
 - 4 metal levels
 - ~40 cells library
 - place and route available
- Received designs implemented in one lot running at LETI

MPW: timetable current run

- ■11Q3 end Distribution of DK via CMP
- 12Q2 (april) GDS to be delivered to CMP
- 12Q3 beg. Tape-out and run start
- 13Q1 beginning Silicon delivery

For more information on accessing the MPW go to CMP website: http://cmp.imag.fr/

For more information on the FDSOI offer contact: carlo.reita@cea.fr

MPW offer: current planning

Innovation for Industry

Loyalty
Entrepreneurship
Team work
Innovation

